Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Nutrient Control of Yeast Gametogenesis Is Mediated by TORC1, PKA and Energy Availability.

Identifieur interne : 000A57 ( Main/Exploration ); précédent : 000A56; suivant : 000A58

Nutrient Control of Yeast Gametogenesis Is Mediated by TORC1, PKA and Energy Availability.

Auteurs : Hilla Weidberg [États-Unis] ; Fabien Moretto [Royaume-Uni] ; Gianpiero Spedale [Royaume-Uni] ; Angelika Amon [États-Unis] ; Folkert J. Van Werven [Royaume-Uni]

Source :

RBID : pubmed:27272508

Descripteurs français

English descriptors

Abstract

Cell fate choices are tightly controlled by the interplay between intrinsic and extrinsic signals, and gene regulatory networks. In Saccharomyces cerevisiae, the decision to enter into gametogenesis or sporulation is dictated by mating type and nutrient availability. These signals regulate the expression of the master regulator of gametogenesis, IME1. Here we describe how nutrients control IME1 expression. We find that protein kinase A (PKA) and target of rapamycin complex I (TORC1) signalling mediate nutrient regulation of IME1 expression. Inhibiting both pathways is sufficient to induce IME1 expression and complete sporulation in nutrient-rich conditions. Our ability to induce sporulation under nutrient rich conditions allowed us to show that respiration and fermentation are interchangeable energy sources for IME1 transcription. Furthermore, we find that TORC1 can both promote and inhibit gametogenesis. Down-regulation of TORC1 is required to activate IME1. However, complete inactivation of TORC1 inhibits IME1 induction, indicating that an intermediate level of TORC1 signalling is required for entry into sporulation. Finally, we show that the transcriptional repressor Tup1 binds and represses the IME1 promoter when nutrients are ample, but is released from the IME1 promoter when both PKA and TORC1 are inhibited. Collectively our data demonstrate that nutrient control of entry into sporulation is mediated by a combination of energy availability, TORC1 and PKA activities that converge on the IME1 promoter.

DOI: 10.1371/journal.pgen.1006075
PubMed: 27272508
PubMed Central: PMC4894626


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Nutrient Control of Yeast Gametogenesis Is Mediated by TORC1, PKA and Energy Availability.</title>
<author>
<name sortKey="Weidberg, Hilla" sort="Weidberg, Hilla" uniqKey="Weidberg H" first="Hilla" last="Weidberg">Hilla Weidberg</name>
<affiliation wicri:level="2">
<nlm:affiliation>David H. Koch Institute for Integrative Cancer Research and Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>David H. Koch Institute for Integrative Cancer Research and Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Moretto, Fabien" sort="Moretto, Fabien" uniqKey="Moretto F" first="Fabien" last="Moretto">Fabien Moretto</name>
<affiliation wicri:level="3">
<nlm:affiliation>Cell Fate and Gene Regulation Laboratory, The Francis Crick Institute, London, United Kingdom.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Cell Fate and Gene Regulation Laboratory, The Francis Crick Institute, London</wicri:regionArea>
<placeName>
<settlement type="city">Londres</settlement>
<region type="country">Angleterre</region>
<region type="région" nuts="1">Grand Londres</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Spedale, Gianpiero" sort="Spedale, Gianpiero" uniqKey="Spedale G" first="Gianpiero" last="Spedale">Gianpiero Spedale</name>
<affiliation wicri:level="3">
<nlm:affiliation>Cell Fate and Gene Regulation Laboratory, The Francis Crick Institute, London, United Kingdom.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Cell Fate and Gene Regulation Laboratory, The Francis Crick Institute, London</wicri:regionArea>
<placeName>
<settlement type="city">Londres</settlement>
<region type="country">Angleterre</region>
<region type="région" nuts="1">Grand Londres</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Amon, Angelika" sort="Amon, Angelika" uniqKey="Amon A" first="Angelika" last="Amon">Angelika Amon</name>
<affiliation wicri:level="2">
<nlm:affiliation>David H. Koch Institute for Integrative Cancer Research and Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>David H. Koch Institute for Integrative Cancer Research and Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Van Werven, Folkert J" sort="Van Werven, Folkert J" uniqKey="Van Werven F" first="Folkert J" last="Van Werven">Folkert J. Van Werven</name>
<affiliation wicri:level="3">
<nlm:affiliation>Cell Fate and Gene Regulation Laboratory, The Francis Crick Institute, London, United Kingdom.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Cell Fate and Gene Regulation Laboratory, The Francis Crick Institute, London</wicri:regionArea>
<placeName>
<settlement type="city">Londres</settlement>
<region type="country">Angleterre</region>
<region type="région" nuts="1">Grand Londres</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2016">2016</date>
<idno type="RBID">pubmed:27272508</idno>
<idno type="pmid">27272508</idno>
<idno type="doi">10.1371/journal.pgen.1006075</idno>
<idno type="pmc">PMC4894626</idno>
<idno type="wicri:Area/Main/Corpus">000A34</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000A34</idno>
<idno type="wicri:Area/Main/Curation">000A34</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000A34</idno>
<idno type="wicri:Area/Main/Exploration">000A34</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Nutrient Control of Yeast Gametogenesis Is Mediated by TORC1, PKA and Energy Availability.</title>
<author>
<name sortKey="Weidberg, Hilla" sort="Weidberg, Hilla" uniqKey="Weidberg H" first="Hilla" last="Weidberg">Hilla Weidberg</name>
<affiliation wicri:level="2">
<nlm:affiliation>David H. Koch Institute for Integrative Cancer Research and Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>David H. Koch Institute for Integrative Cancer Research and Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Moretto, Fabien" sort="Moretto, Fabien" uniqKey="Moretto F" first="Fabien" last="Moretto">Fabien Moretto</name>
<affiliation wicri:level="3">
<nlm:affiliation>Cell Fate and Gene Regulation Laboratory, The Francis Crick Institute, London, United Kingdom.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Cell Fate and Gene Regulation Laboratory, The Francis Crick Institute, London</wicri:regionArea>
<placeName>
<settlement type="city">Londres</settlement>
<region type="country">Angleterre</region>
<region type="région" nuts="1">Grand Londres</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Spedale, Gianpiero" sort="Spedale, Gianpiero" uniqKey="Spedale G" first="Gianpiero" last="Spedale">Gianpiero Spedale</name>
<affiliation wicri:level="3">
<nlm:affiliation>Cell Fate and Gene Regulation Laboratory, The Francis Crick Institute, London, United Kingdom.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Cell Fate and Gene Regulation Laboratory, The Francis Crick Institute, London</wicri:regionArea>
<placeName>
<settlement type="city">Londres</settlement>
<region type="country">Angleterre</region>
<region type="région" nuts="1">Grand Londres</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Amon, Angelika" sort="Amon, Angelika" uniqKey="Amon A" first="Angelika" last="Amon">Angelika Amon</name>
<affiliation wicri:level="2">
<nlm:affiliation>David H. Koch Institute for Integrative Cancer Research and Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>David H. Koch Institute for Integrative Cancer Research and Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Van Werven, Folkert J" sort="Van Werven, Folkert J" uniqKey="Van Werven F" first="Folkert J" last="Van Werven">Folkert J. Van Werven</name>
<affiliation wicri:level="3">
<nlm:affiliation>Cell Fate and Gene Regulation Laboratory, The Francis Crick Institute, London, United Kingdom.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Cell Fate and Gene Regulation Laboratory, The Francis Crick Institute, London</wicri:regionArea>
<placeName>
<settlement type="city">Londres</settlement>
<region type="country">Angleterre</region>
<region type="région" nuts="1">Grand Londres</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PLoS genetics</title>
<idno type="eISSN">1553-7404</idno>
<imprint>
<date when="2016" type="published">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Cyclic AMP-Dependent Protein Kinases (antagonists & inhibitors)</term>
<term>Cyclic AMP-Dependent Protein Kinases (genetics)</term>
<term>Cyclic AMP-Dependent Protein Kinases (metabolism)</term>
<term>DNA-Binding Proteins (genetics)</term>
<term>Gametogenesis (genetics)</term>
<term>Meiosis (genetics)</term>
<term>Nuclear Proteins (antagonists & inhibitors)</term>
<term>Nuclear Proteins (metabolism)</term>
<term>Promoter Regions, Genetic (MeSH)</term>
<term>Protein-Serine-Threonine Kinases (metabolism)</term>
<term>Repressor Proteins (metabolism)</term>
<term>Saccharomyces cerevisiae (genetics)</term>
<term>Saccharomyces cerevisiae Proteins (antagonists & inhibitors)</term>
<term>Saccharomyces cerevisiae Proteins (genetics)</term>
<term>Saccharomyces cerevisiae Proteins (metabolism)</term>
<term>Signal Transduction (genetics)</term>
<term>Spores, Fungal (metabolism)</term>
<term>Transcription Factors (antagonists & inhibitors)</term>
<term>Transcription Factors (genetics)</term>
<term>Transcription Factors (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Cyclic AMP-Dependent Protein Kinases (antagonistes et inhibiteurs)</term>
<term>Cyclic AMP-Dependent Protein Kinases (génétique)</term>
<term>Cyclic AMP-Dependent Protein Kinases (métabolisme)</term>
<term>Facteurs de transcription (antagonistes et inhibiteurs)</term>
<term>Facteurs de transcription (génétique)</term>
<term>Facteurs de transcription (métabolisme)</term>
<term>Gamétogenèse (génétique)</term>
<term>Méiose (génétique)</term>
<term>Protein-Serine-Threonine Kinases (métabolisme)</term>
<term>Protéines de Saccharomyces cerevisiae (antagonistes et inhibiteurs)</term>
<term>Protéines de Saccharomyces cerevisiae (génétique)</term>
<term>Protéines de Saccharomyces cerevisiae (métabolisme)</term>
<term>Protéines de liaison à l'ADN (génétique)</term>
<term>Protéines de répression (métabolisme)</term>
<term>Protéines nucléaires (antagonistes et inhibiteurs)</term>
<term>Protéines nucléaires (métabolisme)</term>
<term>Régions promotrices (génétique) (MeSH)</term>
<term>Saccharomyces cerevisiae (génétique)</term>
<term>Spores fongiques (métabolisme)</term>
<term>Transduction du signal (génétique)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="antagonists & inhibitors" xml:lang="en">
<term>Cyclic AMP-Dependent Protein Kinases</term>
<term>Nuclear Proteins</term>
<term>Saccharomyces cerevisiae Proteins</term>
<term>Transcription Factors</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Cyclic AMP-Dependent Protein Kinases</term>
<term>DNA-Binding Proteins</term>
<term>Saccharomyces cerevisiae Proteins</term>
<term>Transcription Factors</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Cyclic AMP-Dependent Protein Kinases</term>
<term>Nuclear Proteins</term>
<term>Protein-Serine-Threonine Kinases</term>
<term>Repressor Proteins</term>
<term>Saccharomyces cerevisiae Proteins</term>
<term>Transcription Factors</term>
</keywords>
<keywords scheme="MESH" qualifier="antagonistes et inhibiteurs" xml:lang="fr">
<term>Cyclic AMP-Dependent Protein Kinases</term>
<term>Facteurs de transcription</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Protéines nucléaires</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Gametogenesis</term>
<term>Meiosis</term>
<term>Saccharomyces cerevisiae</term>
<term>Signal Transduction</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Cyclic AMP-Dependent Protein Kinases</term>
<term>Facteurs de transcription</term>
<term>Gamétogenèse</term>
<term>Méiose</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Protéines de liaison à l'ADN</term>
<term>Saccharomyces cerevisiae</term>
<term>Transduction du signal</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Spores, Fungal</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Cyclic AMP-Dependent Protein Kinases</term>
<term>Facteurs de transcription</term>
<term>Protein-Serine-Threonine Kinases</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Protéines de répression</term>
<term>Protéines nucléaires</term>
<term>Spores fongiques</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Promoter Regions, Genetic</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Régions promotrices (génétique)</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Cell fate choices are tightly controlled by the interplay between intrinsic and extrinsic signals, and gene regulatory networks. In Saccharomyces cerevisiae, the decision to enter into gametogenesis or sporulation is dictated by mating type and nutrient availability. These signals regulate the expression of the master regulator of gametogenesis, IME1. Here we describe how nutrients control IME1 expression. We find that protein kinase A (PKA) and target of rapamycin complex I (TORC1) signalling mediate nutrient regulation of IME1 expression. Inhibiting both pathways is sufficient to induce IME1 expression and complete sporulation in nutrient-rich conditions. Our ability to induce sporulation under nutrient rich conditions allowed us to show that respiration and fermentation are interchangeable energy sources for IME1 transcription. Furthermore, we find that TORC1 can both promote and inhibit gametogenesis. Down-regulation of TORC1 is required to activate IME1. However, complete inactivation of TORC1 inhibits IME1 induction, indicating that an intermediate level of TORC1 signalling is required for entry into sporulation. Finally, we show that the transcriptional repressor Tup1 binds and represses the IME1 promoter when nutrients are ample, but is released from the IME1 promoter when both PKA and TORC1 are inhibited. Collectively our data demonstrate that nutrient control of entry into sporulation is mediated by a combination of energy availability, TORC1 and PKA activities that converge on the IME1 promoter.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">27272508</PMID>
<DateCompleted>
<Year>2017</Year>
<Month>03</Month>
<Day>28</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">1553-7404</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>12</Volume>
<Issue>6</Issue>
<PubDate>
<Year>2016</Year>
<Month>06</Month>
</PubDate>
</JournalIssue>
<Title>PLoS genetics</Title>
<ISOAbbreviation>PLoS Genet</ISOAbbreviation>
</Journal>
<ArticleTitle>Nutrient Control of Yeast Gametogenesis Is Mediated by TORC1, PKA and Energy Availability.</ArticleTitle>
<Pagination>
<MedlinePgn>e1006075</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pgen.1006075</ELocationID>
<Abstract>
<AbstractText>Cell fate choices are tightly controlled by the interplay between intrinsic and extrinsic signals, and gene regulatory networks. In Saccharomyces cerevisiae, the decision to enter into gametogenesis or sporulation is dictated by mating type and nutrient availability. These signals regulate the expression of the master regulator of gametogenesis, IME1. Here we describe how nutrients control IME1 expression. We find that protein kinase A (PKA) and target of rapamycin complex I (TORC1) signalling mediate nutrient regulation of IME1 expression. Inhibiting both pathways is sufficient to induce IME1 expression and complete sporulation in nutrient-rich conditions. Our ability to induce sporulation under nutrient rich conditions allowed us to show that respiration and fermentation are interchangeable energy sources for IME1 transcription. Furthermore, we find that TORC1 can both promote and inhibit gametogenesis. Down-regulation of TORC1 is required to activate IME1. However, complete inactivation of TORC1 inhibits IME1 induction, indicating that an intermediate level of TORC1 signalling is required for entry into sporulation. Finally, we show that the transcriptional repressor Tup1 binds and represses the IME1 promoter when nutrients are ample, but is released from the IME1 promoter when both PKA and TORC1 are inhibited. Collectively our data demonstrate that nutrient control of entry into sporulation is mediated by a combination of energy availability, TORC1 and PKA activities that converge on the IME1 promoter.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Weidberg</LastName>
<ForeName>Hilla</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>David H. Koch Institute for Integrative Cancer Research and Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Moretto</LastName>
<ForeName>Fabien</ForeName>
<Initials>F</Initials>
<AffiliationInfo>
<Affiliation>Cell Fate and Gene Regulation Laboratory, The Francis Crick Institute, London, United Kingdom.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Spedale</LastName>
<ForeName>Gianpiero</ForeName>
<Initials>G</Initials>
<AffiliationInfo>
<Affiliation>Cell Fate and Gene Regulation Laboratory, The Francis Crick Institute, London, United Kingdom.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Amon</LastName>
<ForeName>Angelika</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>David H. Koch Institute for Integrative Cancer Research and Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>van Werven</LastName>
<ForeName>Folkert J</ForeName>
<Initials>FJ</Initials>
<AffiliationInfo>
<Affiliation>Cell Fate and Gene Regulation Laboratory, The Francis Crick Institute, London, United Kingdom.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 GM062207</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R35 GM118066</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2016</Year>
<Month>06</Month>
<Day>06</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS Genet</MedlineTA>
<NlmUniqueID>101239074</NlmUniqueID>
<ISSNLinking>1553-7390</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004268">DNA-Binding Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C080326">IME1 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D009687">Nuclear Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012097">Repressor Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029701">Saccharomyces cerevisiae Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C561842">TORC1 protein complex, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C066502">TUP1 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014157">Transcription Factors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.1</RegistryNumber>
<NameOfSubstance UI="D017346">Protein-Serine-Threonine Kinases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.1</RegistryNumber>
<NameOfSubstance UI="C530964">SCH9 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.11</RegistryNumber>
<NameOfSubstance UI="D017868">Cyclic AMP-Dependent Protein Kinases</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D017868" MajorTopicYN="N">Cyclic AMP-Dependent Protein Kinases</DescriptorName>
<QualifierName UI="Q000037" MajorTopicYN="N">antagonists & inhibitors</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004268" MajorTopicYN="N">DNA-Binding Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005718" MajorTopicYN="N">Gametogenesis</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008540" MajorTopicYN="N">Meiosis</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009687" MajorTopicYN="N">Nuclear Proteins</DescriptorName>
<QualifierName UI="Q000037" MajorTopicYN="N">antagonists & inhibitors</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011401" MajorTopicYN="N">Promoter Regions, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017346" MajorTopicYN="N">Protein-Serine-Threonine Kinases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012097" MajorTopicYN="N">Repressor Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029701" MajorTopicYN="N">Saccharomyces cerevisiae Proteins</DescriptorName>
<QualifierName UI="Q000037" MajorTopicYN="N">antagonists & inhibitors</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013172" MajorTopicYN="N">Spores, Fungal</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014157" MajorTopicYN="N">Transcription Factors</DescriptorName>
<QualifierName UI="Q000037" MajorTopicYN="N">antagonists & inhibitors</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2015</Year>
<Month>12</Month>
<Day>15</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2016</Year>
<Month>05</Month>
<Day>02</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>6</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>6</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>3</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">27272508</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pgen.1006075</ArticleId>
<ArticleId IdType="pii">PGENETICS-D-15-03037</ArticleId>
<ArticleId IdType="pmc">PMC4894626</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Curr Genet. 1998 Apr;33(4):239-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9560430</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2011 Nov 1;39(20):8803-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21785133</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2004 Jun;24(12):5197-208</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15169885</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biophys. 2009;38:255-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19416069</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2011 Dec 1;25(23):2525-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22156212</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biosci Bioeng. 2012 Apr;113(4):491-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22197499</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1997 May;17(5):2688-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9111339</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1990 Oct;9(10):3225-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2209544</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013 Nov 13;8(11):e78920</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24236068</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2008 Jul 8;18(13):969-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18595705</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2011 Dec;189(4):1177-201</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22174183</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2013 Apr 12;288(15):10558-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23471970</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2004 Oct 15;18(20):2491-505</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15466158</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Gen Genet. 1993 Mar;237(3):375-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8483452</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Genet. 1993 Mar;23(3):223-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8435851</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1994 Jun 30;369(6483):758-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8008070</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1992 Mar;12(3):1078-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1545790</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2004 Aug;24(16):6967-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15282298</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2014 Sep 19;289(38):26554-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25104356</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2015 Sep 10;6:8256</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26356805</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2009 Sep 11;35(5):563-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19748353</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2012 Jul;9(7):671-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22930834</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2005 Dec 1;438(7068):679-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16319894</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1986 Feb 27-Mar 5;319(6056):738-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3513021</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2003 Jun 1;116(Pt 11):2137-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12730290</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1987 Jul 17;50(2):277-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3036373</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2007 Nov 2;131(3):544-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17981121</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2007 Jun 8;26(5):663-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17560372</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2010 Nov;186(3):829-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20739709</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1997 Apr 1;94(7):3070-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9096347</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1993 Aug 11;21(16):3789-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8367297</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1988 May;2(5):517-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3290050</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2010 Oct 1;21(19):3475-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20702584</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Biol. 2014 Sep 02;12:60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25178389</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Syst Biol. 2009;5:245</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19225458</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2007 Aug;176(4):2139-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17565946</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1986 Oct 10;234(4773):179-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3018930</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Cell. 2010 Oct 19;19(4):599-611</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20951350</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2002 Sep;10(3):457-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12408816</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2003 Dec;12 (6):1607-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14690612</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2007 Oct;18(10):4180-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17699586</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1988 May 20;53(4):555-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2836063</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2003 Oct;23(20):7415-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14517308</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1988 Mar 25;52(6):853-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3280136</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Cells. 2002 Jul;7(7):675-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12081645</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1994 Dec;14(12):7909-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7969131</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Oct 6;106(40):17049-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19805182</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2012 Sep 14;150(6):1170-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22959267</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Apr 9;279(15):14752-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14736892</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1998 Aug;18(8):4548-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9671464</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 1998 Jul;14(10):953-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9717241</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2005 Jul 1;19(1):15-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15989961</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2001 Mar;21(5):1603-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11238897</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2009 Dec;6(12 ):917-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19915560</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Mol Biol Rev. 2006 Mar;70(1):253-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16524925</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1999 Jan 15;18(2):320-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9889189</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1992 Feb 21;68(4):709-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1739976</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013 May 08;8(5):e63707</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23675502</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2008 May 21;3(5):e2223</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18493323</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 1996 Jan;7(1):25-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8741837</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Philos Trans R Soc Lond B Biol Sci. 2011 Dec 27;366(1584):3521-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22084379</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1997 Oct;179(20):6325-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9335279</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1995 Jun;15(6):2955-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7760793</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Royaume-Uni</li>
<li>États-Unis</li>
</country>
<region>
<li>Angleterre</li>
<li>Grand Londres</li>
<li>Massachusetts</li>
</region>
<settlement>
<li>Londres</li>
</settlement>
</list>
<tree>
<country name="États-Unis">
<region name="Massachusetts">
<name sortKey="Weidberg, Hilla" sort="Weidberg, Hilla" uniqKey="Weidberg H" first="Hilla" last="Weidberg">Hilla Weidberg</name>
</region>
<name sortKey="Amon, Angelika" sort="Amon, Angelika" uniqKey="Amon A" first="Angelika" last="Amon">Angelika Amon</name>
</country>
<country name="Royaume-Uni">
<region name="Angleterre">
<name sortKey="Moretto, Fabien" sort="Moretto, Fabien" uniqKey="Moretto F" first="Fabien" last="Moretto">Fabien Moretto</name>
</region>
<name sortKey="Spedale, Gianpiero" sort="Spedale, Gianpiero" uniqKey="Spedale G" first="Gianpiero" last="Spedale">Gianpiero Spedale</name>
<name sortKey="Van Werven, Folkert J" sort="Van Werven, Folkert J" uniqKey="Van Werven F" first="Folkert J" last="Van Werven">Folkert J. Van Werven</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000A57 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000A57 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:27272508
   |texte=   Nutrient Control of Yeast Gametogenesis Is Mediated by TORC1, PKA and Energy Availability.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:27272508" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020